Thunderstorms courtesy of NOAA

Types of Thunderstorms

Ordinary Cell

As the name implies, there is usually only one cell with this type of thunderstorm. Also called a “pulse” thunderstorm, the ordinary cell consist of a one time updraft and one time downdraft. In the towering cumulus stage, the rising updraft will suspend growing raindrops until the point where the weight of the water is greater than what can be supported.

At which point, drag of air from the falling drops begins to diminish the updraft and, in turn, allow more raindrops to fall. In effect, the falling rain turns the updraft into a downdraft. With rain falling back into the updraft, the supply of rising moist air is cut-off and the life of the single cell thunderstorm is short.

They are short lived and while hail and gusty wind can develop, these occurrences are typically not severe. However, if atmospheric conditions are right and the ordinary cell is strong enough, there is the potential for more than one cell to form and can include microburst winds (usually less than 70 mph) and weak tornadoes.

Multi-cell Cluster

Although there are times when a thunderstorm consists of just one ordinary cell that transitions through its life cycle and dissipates without additional new cell formation, thunderstorms often form in clusters with numerous cells in various stages of development merging together.

While each individual thunderstorms cell, in a multi-cell cluster, behaves as a single cell, the prevailing atmospheric conditions are such that as the first cell matures, it is carried downstream by the upper level winds and a new cell forms upwind of the previous cell to take its place.

The speed at which the entire cluster of thunderstorms move downstream can make a huge difference in the amount of rain any one place receives. There are many times where the individual cell moves downstream but addition cells form on the upwind side of the cluster and move directly over the path of the previous cell. The term for this type of pattern when viewed by radar is “training echoes”.

Multicell thunderstorm

Also called “back building” thunderstorms, with careful observation you can count the number of individual thunderstorm cells in the cluster that pass your location. Take note of the direction from which you first hear thunder. The thunder’s volume will increase as the cell approaches your location. Then, after it passes and the volume decreases, you will hear more thunder from the next cell, increasing again, coming from the same direction as the previous cell.

Often these storms will appear on radar to be stationary. However, if the new development is vigorous then the thunderstorm cluster appears to move upwind.

Training thunderstorms produce tremendous rainfall over relatively small areas leading to flash flooding.

Multi-cell Line (Squall Line)

Squall line thunderstorm

Sometimes thunderstorms will form in a line which can extend laterally for hundreds of miles. These “squall lines” can persist for many hours and produce damaging winds and hail.

Updrafts, and therefore new cells, continually re-form at leading edge of system with rain and hail following behind. Individual thunderstorm updrafts and downdrafts along the line can become quite strong, resulting in episodes of large hail and strong outflow winds which move rapidly ahead of system.

While tornados occasionally form on the leading edge of squall lines they primarily produce “straight-line” wind damage.

This is damage as a result of the shear force of the down draft from a thunderstorm spreading horizontally as it reaches the earth’s surface.

Leading edge of a squall line

Long-lived strong squall lines after called “derechos” (Spanish for ‘straight’). Derechos can travel many hundreds of miles and can produce considerable widespread damage from wind and hail.

Often along the leading edge of the squall line is a low hanging arc of cloudiness called the shelf cloud.

This appearance is a result of the rain cooled air spreading out from underneath the squall line acts as a mini cold front. The cooler dense air forces the warmer, less dense air, up. The rapidly rising air cools and condenses creating the shelf cloud.

 

Supercell Thunderstorms

Classic supercell

Supercell thunderstorms are a special kind of single cell thunderstorm that can persist for many hours.

They are responsible for nearly all of the significant tornadoes produced in the U.S. and for most of the hailstones larger than golf ball size. Supercells are also known to produce extreme winds and flash flooding.

Supercells are highly organized storms characterized updrafts that can attain speeds over 100 miles per hour, able to produce extremely large hail and strong and/or violent tornadoes, downdrafts that can produce damaging outflow winds in excess of 100 mph – all of which pose a high threat to life and property.

Idealized LP supercell

The most ideal conditions for supercells occurs when the winds are veering or turning clockwise with height. For example, in a veering wind situation the winds may be from the south at the surface and from the west at 15,000 feet (4,500 meters). This change in wind speed and direction produces storm-scale rotation, meaning the entire cloud rotates, which may gives a striated or corkscrew appearance to the storm”s updraft.

Dynamically, all supercells are fundamentally similar. However, they often appear quite different visually from one storm to another depending on the amount of precipitation accompanying the storm and whether precipitation falls adjacent to, or is removed from, the storm”s updraft.

Based on their visual appearance, supercells are often divided into three groups;

  • Rear Flank Supercell – Low precipitation (LP),
  • Classic (CL), or
  • Front Flank Supercell – High precipitation (HP).

In LP supercells the updraft is on the rear flank of the storm, a barber pole or corkscrew appearance of updraft is possible, precipitation sparse or well removed from the updraft, often is transparent and you can”t see it, and large hail is often difficult to discern visually. Also, there is no “hook” seen on Doppler radar.

Idealized HP supercell

The majority of supercells fall in the “classic” category. These have large, flat updraft bases, generally has a wall cloud with it, striations or banding can been seen around the periphery of the updraft, heavy precipitation falls adjacent to the updraft with large hail likely, and have the potential for strong, long-lived tornadoes.

HP supercells will have…

  • the updraft on the front flank of the storm
  • precipitation that almost surrounds updraft at times
  • the likelihood of a wall cloud (but it may be obscured by the heavy precipitation)
  • tornadoes that are potentially wrapped by rain (and therefore difficult to see), and
  • extremely heavy precipitation with flash flooding.

Beneath the supercell, the rotation of the storm is often visible as well. The wall cloud is sometimes a precursor to a tornado. If a tornado were to form, it would usually do so within the wall cloud.

Wall clouds are isolated lower clouds below the rain-free base and below the main storm tower. Wall clouds are often located on the trailing flank of a storm. With some storms, such as high precipitation supercells, the wall cloud area may be obscured by precipitation or located on the leading flank of the storm.

Wall cloud

Wall clouds associated with potentially severe storms can:

  • Be a persistent feature that lasts for 10 minutes or more
  • Have visible rotation
  • Appear with lots of rising or sinking motion within and around the wall cloud

 

Leave a comment

name*

email* (not published)

website

Skip to toolbar